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Everyone wants to know how accurate their forecasts are. Does your forecasting method give

good forecasts? Are they better than the competitor methods?

There are many ways of measuring the accuracy of forecasts, and the answers to these questions

depends on what is being forecast, what accuracy measure is used, and what data set is used

for computing the accuracy measure. In this chapter, I will summarize the most important and

useful approaches.

1 Training and test sets

It is important to evaluate forecast accuracy using genuine forecasts. That is, it is invalid to look

at how well a model fits the historical data; the accuracy of forecasts can only be determined by

considering how well a model performs on new data that were not used when estimating the

model. When choosing models, it is common to use a portion of the available data for testing,

and use the rest of the data for estimating (or “training”) the model. Then the testing data can

be used to measure how well the model is likely to forecast on new data.
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Figure 1: A time series is often divided into training data (used to estimate the model) and test data
(used to evaluate the forecasts).

The size of the test data set is typically about 20% of the total sample, although this value

depends on how long the sample is and how far ahead you want to forecast. The size of the test

set should ideally be at least as large as the maximum forecast horizon required.

1This chapter is based on Section 2.5 of Forecasting: principles and practice by Rob J Hyndman and George
Athanasopoulos, available online at www.otexts.org/fpp/2/5, and used with permission.
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The following points should be noted.

• A model which fits the data well does not necessarily forecast well.

• A perfect fit can always be obtained by using a model with enough parameters.

• Over-fitting a model to data is as bad as failing to identify the systematic pattern in the

data.

Some references describe the test data as the “hold-out set” because these data are “held out” of

the data used for fitting. Other references call the training data the “in-sample data” and the

test data the “out-of-sample data”.

2 Forecast accuracy measures

Suppose our data set is denoted by y1, . . . , yT , and we split it into two sections: the training data

(y1, . . . , yN ) and the test data (yN+1, . . . , yT ). To check the accuracy of our forecasting method, we

will estimate the parameters using the training data, and forecast the next T −N observations.

These forecasts can then be compared to the test data.

The h-step-ahead forecast can be written as ŷN+h|N . The “hat” notation indicates that it is an

estimate rather than an observed value, and the subscript indicates that we are estimating yN+h

using all the data observed up to and including time N .

The forecast errors are the difference between the actual values in the test set and the forecasts

produced using only the data in the training set. Thus

et = yt − ŷt|N , for t = N + 1, . . . ,T .

Scale-dependent errors

These errors are on the same scale as the data. For example, if yt is sales volume in kilograms,

then et is also in kilograms. Accuracy measures that are based directly on et are therefore

scale-dependent and cannot be used to make comparisons between series that are on different

scales.

The two most commonly used scale-dependent measures are based on the absolute errors or

squared errors:

Mean absolute error: MAE = mean(|ei |),
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Root mean squared error: RMSE =
√

mean(e2
i ).

When comparing forecast methods on a single data set, the MAE is popular as it is easy to

understand and compute.

Percentage errors

The percentage error is given by pt = 100et/yt. Percentage errors have the advantage of be-

ing scale-independent, and so are frequently used to compare forecast performance between

different data sets. The most commonly used measure is:

Mean absolute percentage error: MAPE = mean(|pt |).

Measures based on percentage errors have the disadvantage of being infinite or undefined if

yt = 0 for any observation in the test set, and having extreme values when any yt is close to zero.

Another problem with percentage errors that is often overlooked is that they assume a scale

based on quantity. If yt is measured in dollars, or kilograms, or some other quantity, percentages

make sense. On the other hand, a percentage error makes no sense when measuring the accuracy

of temperature forecasts on the Fahrenheit or Celsius scales, because these are not measuring a

quantity. One way to think about it is that percentage errors only make sense if changing the

scale does not change the percentage. Changing yt from kilograms to pounds will give the same

percentages, but changing yt from Fahrenheit to Celsius will give different percentages.

Scaled errors

Scaled errors were proposed by Hyndman and Koehler (2006) as an alternative to using per-

centage errors when comparing forecast accuracy across series on different scales. A scaled

error is given by qt = et/Q where Q is a scaling statistic computed on the training data. For

a non-seasonal time series, a useful way to define the scaling statistic is the mean absolute

difference between consecutive observations:

Q =
1

N − 1

N∑
j=2

|yj − yj−1|.

That is, Q is the MAE for naïve forecasts computed on the training data. Because the numerator

and denominator both involve values on the scale of the original data, qt is independent of the
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scale of the data. A scaled error is less than one if it arises from a better forecast than the average

naïve forecast computed on the training data. Conversely, it is greater than one if the forecast is

worse than the average naïve forecast computed on the training data. For seasonal time series, a

scaling statistic can be defined using seasonal naïve forecasts:

Q =
1

N −m

N∑
j=m+1

|yj − yj−m|.

The mean absolute scaled error is simply

MASE = mean(|qj |) = MAE/Q.

The value of Q is calculated using the training data because it is important to get a stable

measure of the scale of the data. The training set is usually much larger than the test set, and so

allows a better estimate of Q.

Example: Australian quarterly beer production

Forecasts for quarterly beer production

1995 2000 2005 2010
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Figure 2: Forecasts of Australian quarterly beer production using an ARIMA model applied to data
up to the end of 2005. The black line shows actual values (in the training and test data sets)
while the blue line shows the forecasts.
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Actual Forecast Error Percent. error

2007 Q1 427 423.69 3.31 0.78
2007 Q2 383 386.88 −3.88 −1.01
2007 Q3 394 404.71 −10.71 −2.72
2007 Q4 473 483.59 −10.59 −2.24
2008 Q1 420 423.81 −3.81 −0.91
2008 Q2 390 385.42 4.58 1.17
2008 Q3 410 403.25 6.75 1.65
2008 Q4 488 482.13 5.87 1.20
2009 Q1 415 422.35 −7.35 −1.77
2009 Q2 398 383.96 14.04 3.53
2009 Q3 419 401.79 17.21 4.11
2009 Q4 488 480.67 7.33 1.50
2010 Q1 414 420.89 −6.89 −1.66
2010 Q2 374 382.50 −8.50 −2.27

MAE 7.92
RMSE 8.82
MAPE 1.89%
MASE 0.54

Table 1: Accuracy measures computed from ARIMA forecasts for the 14 observations in the test data.

Figure 2 shows forecasts for quarterly Australian beer production1 An ARIMA model was

estimated on the training data (data from 1992 to 2006), and forecasts for the next 14 quarters

were produced. The actual values for the period 2007–2010 are also shown.

The forecast accuracy measures are computed in Table 1. The scaling constant for the MASE

statistic was Q = 14.55 (based on the training data 1992–2006).

3 Time series cross-validation

For short time series, we do not not want limit the available data by splitting some off in a test

set. Also, if the test set is small, the conclusions we draw from the forecast accuracy measures

may not be very reliable. One solution to these problems is to use “time series cross-validation”.

In this approach, we use many different training sets, each one containing one more observation

than the previous one. Figure 3 shows the series of training sets (in blue) and test sets (in red).

The forecast accuracy measures are calculated on each test set and the results are averaged

across all test sets (adjusting for their different sizes).

1The data were obtained from the Australian Bureau of Statistics, Cat.No.8301.0.55.001.
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Figure 3: In time series cross-validation, a series of training and test sets are used. Each training set
(blue) contains one more observation than the previous one, and consequently each test set
(red) has one fewer observations than the previous one.

A variation on this approach focuses on a single forecast horizon for each test set. Figure 4

shows a series of test sets containing only one observation in each case. Then the calculation

of accuracy measures is for one-step forecasts, rather than averaging across several forecast

horizons.
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Figure 4: Time series cross-validation based on one-step forecasts. The blue points are training sets,
the red points are test sets and the grey points are ignored.

In any of these cross-validation approaches, we need a minimum size for the training set because

it is often not possible to do any meaningful forecasting if there is not enough data in the

training set to estimate our chosen model. The minimum size of the training set depends on the

complexity of the model we want to use.

Suppose k observations are required to produce a reliable forecast. Then the process works as

follows.
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1. Select the observation at time k + i for the test set, and use the observations at times

1,2, . . . , k + i −1 to estimate the forecasting model. Compute the error on the forecast for

time k + i.

2. Repeat the above step for i = 1,2, . . . ,T − k where T is the total number of observations.

3. Compute the forecast accuracy measures based on the errors obtained.

This procedure is sometimes known as evaluation on a “rolling forecasting origin” because the

“origin” (k + i − 1) at which the forecast is based rolls forward in time.

With time series forecasting, one-step forecasts may not be as relevant as multi-step forecasts.

In this case, the cross-validation procedure based on a rolling forecasting origin can be modified

to allow multi-step errors to be used. Suppose we are interested in models that produce good

h-step-ahead forecasts.

1. Select the observation at time k + h+ i − 1 for the test set, and use the observations at times

1,2, . . . , k+ i−1 to estimate the forecasting model. Compute the h-step error on the forecast

for time k + h+ i − 1.

2. Repeat the above step for i = 1,2, . . . ,T −k−h+1 where T is the total number of observations.

3. Compute the forecast accuracy measures based on the errors obtained.

When h = 1, this gives the same procedure as outlined above.

Example: Australian quarterly beer production

To illustrate the above procedure (for one-step forecasts only), we will use the Australian beer

data again, with an ARIMA model estimated for each training set. We will select a new ARIMA

model at each step using the Hyndman–Khandakar (2006) algorithm, and forecast the first

observation that is not in the training data. The minimum size of the training data is set to

k = 16 observations, and there are T = 74 total observations in the data. Therefore, we compute

58 = 74−16 models and their one-step forecasts. The resulting errors are used to compute some

accuracy measures:

To calculate the MASE we need to compute the scaling statistic Q, but we do not want the value

of Q to change with each training set. One approach is to compute Q using all the available

data. Note that Q does not affect the forecasts at all, so this does not violate our rule of not
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MAE 11.14
RMSE 14.66
MAPE 2.57%

Table 2: Error measures calculated on one-step forecasts computed using a time series cross-validation
beginning with 16 observations in the training data, and finishing with 73 observations in
the training data.

using the data we are trying to forecast when producing our forecasts. The value of Q using all

available data is Q = 13.57, so that MASE = 11.14/13.57 = 0.82. This shows that, on average, our

forecasting model is giving errors that are about 82% as large as those that would be obtained if

we used a seasonal naïve forecast.

Notice that the values of the accuracy measures are worse now than they were before, even

though these measures are computed on one-step forecasts and the previous calculations were

averaged across 14 forecast horizons. In general, the further ahead you forecast, the less

accurate your forecasts should be. On the other hand, it is harder to predict accurately with

a smaller training set because there is greater estimation error. Finally, the previous results

were on a relatively small test set (only 14 observations) and so they are less reliable than the

cross-validation results which are calculated on 58 observations.

4 Conclusions

• Always calculate forecast accuracy measures using test data that was not used when

computing the forecasts.

• Use the MAE or RMSE if all your forecasts are on the same scale.

• Use the MAPE if you need to compare forecast accuracy on several series with different

scales, unless the data contain zeros or small values, or are not measuring a quantity.

• Use the MASE if you need to compare forecast accuracy on several series with different

scales, especially when the MAPE is inappropriate.

• Use time series cross-validation where possible, rather than a simple training/test set split.
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