Intelligent Movie Recommender System Using Machine Learning

purpose of suggesting items to view or purchase. The Intelligent movie recommender
system that is proposed combines the concept of Human-Computer
Interaction and Machine Learning. The proposed system is a subclass of
information filtering system that captures facial feature points as well as emotions
of a viewer and suggests them movies accordingly. It recommends movies
best suited for users as per their age and gender and also as per the genres they
prefer to watch. The recommended movie list is created by the cumulative effect
of ratings and reviews given by previous users. A neural network is trained to
detect genres of movies like horror, comedy based on the emotions of the user
watching the trailer. Thus, proposed system is intelligent as well as secure as a
user is verified by comparing his face at the time of login with one stored at the
time of registration. The system is implemented by a fully dynamic interface i.e.
a website that recommends movies to the user [22].
Conclusion and Future Work
Learning method for training data as well as sentiment analysis on reviews. The system
facilitates a web-based user interface i.e. a website that has a user database and has a
Learning model tailored to each user. This interface is dynamic and updates regularly.
Afterward, it tags a movie with genres to which they belong based on expressions of
users watching the trailer. The major problem arises with this technique is when the
viewer gives neutral face expressions while watching a movie. In this case the system is
unable to determine the genre of the movie accurately. The recommendations are
refined with the help of reviews and rating taken by the users who have watched that
movie.
A user is allowed to create a single account, and only he can log in from his account
as we verify face every time. The accuracy of the proposed recommendation system
can be improved by adding more analysis factor to user behavior. Location or mood of
the user, special occasions in the year like festivals can also be taken into consideration
to recommend movies. In further updates text summarization on reviews can be
implemented which summaries user comment into single line will comments. Review
Authenticity can be applied to the system to prevent fake and misguiding reviews. Only
genuine reviews would be considered for evaluation of movie rating. In future, the
system can be used with nearby cinema halls to book movie tickets online through our
website [22]. Our approach can be extended to various application domains to
recommend music, books, etc.
Anúncios
Intelligent Movie Recommender System Using Machine Learning

SLIM: Sparse Linear Methods for Top-N Recommender Systems

Um ótimo artigo de base teórica, relativo a geração de Top-N recomendações em cenários bem esparsos (e.g. sistema de rating 0-5 em que poucas pessoas fazem a anotação do rating, etc).

Recentemente, esse problema de recomendar dentro de uma matriz muito esparsa foi o motivo pelo qual o Netflix mudou o seu sistema de Rating que era de 1 a 5 para jóia ou ruim.

 

Em todo o caso vale a pena a leitura para ver a forma na qual os autores estão trabalhando nesse tipo de desafio.

Abstract: This paper focuses on developing effective and efficient algorithms for top-N recommender systems. A novel Sparse Linear Method (SLIM) is proposed, which generates top-N recommendations by aggregating from user purchase/rating profiles. A sparse aggregation coefficient matrix W is learned from SLIM by solving an `1-norm and `2-norm regularized optimization problem. W is demonstrated to produce high quality recommendations and its sparsity allows SLIM to generate recommendations very fast. A comprehensive set of experiments is conducted by comparing the SLIM method and other state-of-the-art top-N recommendation methods. The experiments show that SLIM achieves significant improvements both in run time performance and recommendation quality over the best existing methods. 

SLIM: Sparse Linear Methods for Top-N Recommender Systems

Local Item-Item Models For Top-N Recommendation

Esse é um dos segredos teóricos por trás do Netflix: Porque computacionalmente tratar todos os clientes como diferentes, se alguns deles têm preferências semelhantes.

Abstract: Item-based approaches based on SLIM (Sparse LInear Methods) have demonstrated very good performance for top-N recommendation; however they only estimate a single model for all the users. This work is based on the intuition that not all users behave in the same way — instead there exist subsets of like-minded users. By using different item-item models for these user subsets, we can capture differences in their preferences and this can lead to improved performance for top-N recommendations. In this work, we extend SLIM by combining global and local SLIM models. We present a method that computes the prediction scores as a user-specific combination of the predictions derived by a global and local item-item models. We present an approach in which the global model, the local models, their user-specific combination, and the assignment of users to the local models are jointly optimized to improve the top-N recommendation performance. Our experiments show that the proposed method improves upon the standard SLIM model and outperforms competing top-N recommendation approaches.

Local Item-Item Models For Top-N Recommendation