SLIM: Sparse Linear Methods for Top-N Recommender Systems

Um ótimo artigo de base teórica, relativo a geração de Top-N recomendações em cenários bem esparsos (e.g. sistema de rating 0-5 em que poucas pessoas fazem a anotação do rating, etc).

Recentemente, esse problema de recomendar dentro de uma matriz muito esparsa foi o motivo pelo qual o Netflix mudou o seu sistema de Rating que era de 1 a 5 para jóia ou ruim.

 

Em todo o caso vale a pena a leitura para ver a forma na qual os autores estão trabalhando nesse tipo de desafio.

Abstract: This paper focuses on developing effective and efficient algorithms for top-N recommender systems. A novel Sparse Linear Method (SLIM) is proposed, which generates top-N recommendations by aggregating from user purchase/rating profiles. A sparse aggregation coefficient matrix W is learned from SLIM by solving an `1-norm and `2-norm regularized optimization problem. W is demonstrated to produce high quality recommendations and its sparsity allows SLIM to generate recommendations very fast. A comprehensive set of experiments is conducted by comparing the SLIM method and other state-of-the-art top-N recommendation methods. The experiments show that SLIM achieves significant improvements both in run time performance and recommendation quality over the best existing methods. 

Anúncios
SLIM: Sparse Linear Methods for Top-N Recommender Systems

Local Item-Item Models For Top-N Recommendation

Esse é um dos segredos teóricos por trás do Netflix: Porque computacionalmente tratar todos os clientes como diferentes, se alguns deles têm preferências semelhantes.

Abstract: Item-based approaches based on SLIM (Sparse LInear Methods) have demonstrated very good performance for top-N recommendation; however they only estimate a single model for all the users. This work is based on the intuition that not all users behave in the same way — instead there exist subsets of like-minded users. By using different item-item models for these user subsets, we can capture differences in their preferences and this can lead to improved performance for top-N recommendations. In this work, we extend SLIM by combining global and local SLIM models. We present a method that computes the prediction scores as a user-specific combination of the predictions derived by a global and local item-item models. We present an approach in which the global model, the local models, their user-specific combination, and the assignment of users to the local models are jointly optimized to improve the top-N recommendation performance. Our experiments show that the proposed method improves upon the standard SLIM model and outperforms competing top-N recommendation approaches.

Local Item-Item Models For Top-N Recommendation