Comparação das técnicas de aprendizado de máquina para previsão de sobrevivência em Câncer de Mama

Um ótimo estudo do BioDataMining que poderia ser reproduzido aqui em terra brasilis. Uma crítica que eu vejo nesse trabalho foi que a seleção de atributos como diria o Daniel Larose foi um pouco black-box e particularmente a abordagem em Algoritmos Genéticos não deve ser tão performática em relação a SVM (o ponto dos autores é que os dados tinha uma dimensionalidade razoável).

A comparison of machine learning techniques for survival prediction in breast cancer

Comparação das técnicas de aprendizado de máquina para previsão de sobrevivência em Câncer de Mama

Financial Series – Prediction of Stock Market Index Movement by Ten Data Mining Techniques

Esse artigo escrito por Phichhang OuHengshan Wang ambos da University of Shanghai apresenta um estudo sobre a aplicação de dez técnicas de Mineração de Dados aplicado a predição dos índices relativos à bolsa de valores de Hong Kong.

O artigo tem como idéia principal realizar uma análise experimental e comparativa sobre dez técnicas de Mineração de Dados (Linear discriminant analysis (LDA), Quadratic discriminant analysis (QDA), K-nearest neighbor classification, Naïve Bayes based on kernel estimation, Logit model, Tree based classification, Neural Network, Bayesian Classification with Gaussian Process, Support Vector Machine (SVM) e Least Squares Support Vector Machine (LS-SVM)) na qual os pesquisadores realizam uma série de ajustes no modelo para cálculo da flutuação do índice ao longo do estudo.

Como resultado do estudo os autores chegaram à conclusão que a maioria das técnicas aplicadas tiveram um hit rate acima de 80%, o que é um ótimo sinal dado o número imenso de variáveis a serem consideradas e o grau de dificuldade de mapeamento do domínio.

Em geral o artigo é bem escrito e dá uma perspectiva muito interessante em modelagem matemática aplicada a esse tipo de domínio. O único ponto contra é que o artigo poderia ter o método de cross-validation mais bem descrito, e claro o conteúdo matemático é uma barreira para os iniciantes; mas nada que um pouco de dedicação pessoal não possa superar.

Prediction of Stock Market Index Movement by Ten Data Mining Techniques

Financial Series – Prediction of Stock Market Index Movement by Ten Data Mining Techniques