Self-Driving Cars no GTA 5 usando Deep Learning

Pra quem acompanha o Python Programming, sabe que sempre quando eles postam algo é que coisa boa vem aí; e dessa vez não foi diferente.

O Harrison está fazendo uma série de posts sobre como jogar GTA V usando Deep Learning com Tensor Flow usando CNN (convolutional neural network).

Este é o primeiro vídeo da série em que ele faz o setup da solução:

 

E essa é a última versão treinada:

Para quem estiver interessado o Harrison deixou uma playlist com todos os estágios do treinamento, e um BOT rodando sozinho em um livestream (vale a pena ver o quão divertido é ver o bot tentando dirigir).

E o código está disponível no Github.

Self-Driving Cars no GTA 5 usando Deep Learning

Redes Neurais Coevolucionárias aplicadas na identificação do Mal de Parkinson

Mais um caso de aplicação de Deep Learning em questões médicas.

Convolutional Neural Networks Applied for Parkinson’s Disease Identification

Abstract: Parkinson’s Disease (PD) is a chronic and progressive illness that affects hundreds of thousands of people worldwide. Although it is quite easy to identify someone affected by PD when the illness shows itself (e.g. tremors, slowness of movement and freezing-of-gait), most works have focused on studying the working mechanism of the disease in its very early stages. In such cases, drugs can be administered in order to increase the quality of life of the patients. Since the beginning, it is well-known that PD patients feature the micrography, which is related to muscle rigidity and tremors. As such, most exams to detect Parkinson’s Disease make use of handwritten assessment tools, where the individual is asked to perform some predefined tasks, such as drawing spirals and meanders on a template paper. Later, an expert analyses the drawings in order to classify the progressive of the disease. In this work, we are interested into aiding physicians in such task by means of machine learning techniques, which can learn proper information from digitized versions of the exams, and them recommending a probability of a given individual being affected by PD depending on its handwritten skills. Particularly, we are interested in deep learning techniques (i.e. Convolutional Neural Networks) due to their ability into learning features without human interaction. Additionally, we propose to fine-tune hyper-arameters of such techniques by means of meta-heuristic-based techniques, such as Bat Algorithm, Firefly Algorithm and Particle Swarm Optimization.

Redes Neurais Coevolucionárias aplicadas na identificação do Mal de Parkinson