Falhar na preparação, é se preparar para falhar…

Assunto antigo, mas que deve ser lembrado sempre que possível:

Given this context, it is curious to note that so much of what is published (again, especially on-line; think of titles such as: “The 10 Learning Algorithms Every Data Scientist Must Know”) and so many job listings emphasize- almost to the point of exclusivity- learning algorithms, as opposed to practical questions of data sampling, data preparation and enhancement, variable reduction, solving the business problem (instead of the technical one) or ability to deploy the final product.

 

Falhar na preparação, é se preparar para falhar…

Deep Learning AMI Amazon Web Services

Para quem quer escalar processamento em Machine Learning e não tem grana para comprar GPUs, o Deep Learning AMI da Amazon é uma ótima alternativa em termos de custos.

The Deep Learning AMI is an Amazon Linux image supported and maintained by Amazon Web Services for use on Amazon Elastic Compute Cloud (Amazon EC2). It is designed to provide a stable, secure, and high performance execution environment for deep learning applications running on Amazon EC2. It includes popular deep learning frameworks, including MXNet, Caffe, Tensorflow, Theano, CNTK and Torch as well as packages that enable easy integration with AWS, including launch configuration tools and many popular AWS libraries and tools. It also includes the Anaconda Data Science Platform for Python2 and Python3. Amazon Web Services provides ongoing security and maintenance updates to all instances running the Amazon Linux AMI. The Deep Learning AMI is provided at no additional charge to Amazon EC2 users.

The AMI Ids for the Deep Learning Amazon Linux AMI are the following:
us-east-1 : ami-e7c96af1
us-west-2: ami-dfb13ebf
eu-west-1: ami-6e5d6808

Release tags/Branches used for the DW Frameworks:
MXNet : v0.9.3 tag
Tensorflow : v1.0.0 tag
Theano : rel-0.8.2 tag
Caffe : rc5 tag
CNTK : v2.0beta12.0 tag
Torch : master branch
Keras : 1.2.2 tag

Deep Learning AMI Amazon Web Services

Ferramenta para Machine Learning – MLJAR

Para quem busca uma alternativa paga para Machine Learning em ambientes fora da própria infraestrutura o MLJAR pode ser a resposta.

WHAT IS MLJAR?

MLJAR is a human-first platform for machine learning.
It provides a service for prototyping, development and deploying pattern recognition algorithms.
It makes algorithm search and tuning painless!

HOW IT WORKS?

You pay for computational time used for models training, predictions and data analysis. 1 credit is 1 computation hour on machine with 8 CPU and 15GB RAM. Computational time is aggregated per second basis.

Ferramenta para Machine Learning – MLJAR

Falhas na abordagem de Deep Learning: Arquiteturas e Meta-parametrização

O maior desafio corrente enfrentado pela indústria no que diz respeito à Deep Learning está sem sombra de dúvidas na parte computacional em que todo o mercado está absorvendo tanto os serviços de nuvem para realizar cálculos cada vez mais complexos como também bem como investindo em capacidade de computação das GPU.

Entretanto, mesmo com o hardware nos dias de hoje já ser um commodity, a academia está resolvendo um problema que pode revolucionar a forma na qual se faz Deep Learning que é no aspecto arquitetural/parametrização.

Esse comentário da thread diz muito a respeito desse problema em que o usuário diz:

The main problem I see with Deep Learning: too many parameters.

When you have to find the best value for the parameters, that’s a gradient search by itself. The curse of meta-dimensionality.

Ou seja, mesmo com toda a disponibilidade do hardware a questão de saber qual é o melhor arranjo arquitetural de uma rede neural profunda? ainda não está resolvido.

Este paper do Shai Shalev-Shwartz , Ohad Shamir, e Shaked Shammah chamado “Failures of Deep Learning” expõe esse problema de forma bastante rica inclusive com experimentos (este é o repositório no Git).

Os autores colocam que os pontos de falha das redes Deep Learning que são a) falta de métodos baseados em gradiente para otimização de parâmetros, b) problemas estruturais nos algoritmos de Deep Learning na decomposição dos problemas, c) arquitetura e d) saturação das funções de ativação.

Em outras palavras, o que pode estar acontecendo em grande parte das aplicações de Deep Learning é que o tempo de convergência poderia ser muito menor ainda, se estes aspectos já estivessem resolvidos.

Com isso resolvido, grande parte do que conhecemos hoje como indústria de hardware para as redes Deep Learning seria ou sub-utilizada ao extremo (i.e. dado que haverá uma melhora do ponto de vista de otimização arquitetural/algorítmica) ou poderia ser aproveitada para tarefas mais complexas (e.g. como reconhecimento de imagens com baixo número de pixels).

Desta forma mesmo adotando uma metodologia baseada em hardware como a indústria vem fazendo, há ainda muito espaço de otimização em relação às redes Deep Learning do ponto de vista arquitetural e algorítmico.

Abaixo uma lista de referências direto do Stack Exchange para quem quiser se aprofundar mais no assunto:

Algoritmos Neuro-Evolutivos

Aprendizado por Reforço:

Miscelânea:

PS: O WordPress retirou a opção de justificar texto, logo desculpem de antemão a aparência amadora do blog nos próximos dias.

 

Falhas na abordagem de Deep Learning: Arquiteturas e Meta-parametrização