Tuning via hiper-parametrização para Máquinas de Vetor de Suporte (Support Vector Machines) por estimação de distribuição de algoritmos

Em épocas de Deep Learning, é sempre bom ver um paper com as boas e velhas Máquinas de Vetor de Suporte (Support Vector Machines). Em breve teremos um post sobre essa técnica aqui no blog.

Hyper-Parameter Tuning for Support Vector Machines by Estimation of Distribution Algorithms

Abstract: Hyper-parameter tuning for support vector machines has been widely studied in the past decade. A variety of metaheuristics, such as Genetic Algorithms and Particle Swarm Optimization have been considered to accomplish this task. Notably, exhaustive strategies such as Grid Search or Random Search continue to be implemented for hyper-parameter tuning and have recently shown results comparable to sophisticated metaheuristics. The main reason for the success of exhaustive techniques is due to the fact that only two or three parameters need to be adjusted when working with support vector machines. In this chapter, we analyze two Estimation Distribution Algorithms, the Univariate Marginal Distribution Algorithm and the Boltzmann Univariate Marginal Distribution Algorithm, to verify if these algorithms preserve the effectiveness of Random Search and at the same time make more efficient the process of finding the optimal hyper-parameters without increasing the complexity of Random Search.

Anúncios
Tuning via hiper-parametrização para Máquinas de Vetor de Suporte (Support Vector Machines) por estimação de distribuição de algoritmos

Deixe o seu comentário inteligente e educado! :o)

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair / Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair / Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair / Alterar )

Foto do Google+

Você está comentando utilizando sua conta Google+. Sair / Alterar )

Conectando a %s