Porque o Overfitting é mais perigoso do que uma acurácia baixa?

O Dean Abbott mostra uma reflexão interessante no que tange modelos de dados que possam ser generalizados e os perigos do Overfitting.

Após a leitura desse artigo, fica mais evidente que modelos de dados devem ser testados, se possíveis, com amostras separadas dos conjuntos de dados de treinamento e teste (Holdout).

Porque o Overfitting é mais perigoso do que uma acurácia baixa?

Deixe o seu comentário inteligente e educado! :o)

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair / Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair / Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair / Alterar )

Foto do Google+

Você está comentando utilizando sua conta Google+. Sair / Alterar )

Conectando a %s